Math Virtual Learning

College Algebra

May 21, 2020

College Algebra
 Lesson: May 21, 2020

Objective/Learning Target:

Students will be able to find matrix inverses.

Warm Up Activity:

Watch the video on the inverse matrix

Inverse Matrix

Lesson:

Watch this video on how to find the inverse of a matrix. We encourage you to have your own sheet of paper out and work along with the video.
inverse of a square matrix:

$$
A A^{-1}=I \quad A^{-1}(A)=(\mathbb{1})
$$

Solve to find the inverse matrix
only square matrices have an inverse

Practice:

Practice both 2×2 and 3×3 matrix inverses.

2x2 Inverse
 3x3 Inverse

Additional Practice:

Find the inverse of the Matrix:

1)

$$
A=\left[\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right]
$$

2) $\mathrm{B}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 5 & -1 \\ -2 & -1 & -2\end{array}\right]$

Additional Practice Answers: Solutions to Additional Problems
1)

$$
\mathrm{A}^{-1}=\left[\begin{array}{cc}
\frac{2}{5} & \frac{-1}{5} \\
\frac{-3}{5} & \frac{4}{5}
\end{array}\right]
$$

2)

$$
\mathrm{B}^{-1}=\left[\begin{array}{ccc}
\frac{11}{2} & \frac{-5}{2} & \frac{-3}{2} \\
-4 & 2 & 1 \\
\frac{-7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

Work for additional Problem 1: The Gauss-Jordan Method

Step 1: Set up the given matrix with the identity matrix as the form of $\left[\begin{array}{ll|ll}4 & 1 & 1 & 0 \\ 3 & 2 & 0 & 1\end{array}\right]$
Step 2: Transforming the left Matrix into the identical matrix follow the rules of Row operations.

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
4 & 1 & 1 & 0 \\
3 & 2 & 0 & 1
\end{array}\right] \xrightarrow[R_{1} \div 4]{ }\left[\begin{array}{ll|ll}
1 & \frac{1}{4} & \frac{1}{4} & 0 \\
3 & 2 & 0 & 1
\end{array}\right] \xrightarrow{-3 R_{1}+R_{2}}\left[\begin{array}{cc|cc}
1 & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & \frac{5}{4} & \frac{-3}{4} & 1
\end{array}\right]} \\
& \xrightarrow{(4 / 5) R_{2}}\left[\begin{array}{ll|cc}
1 & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & 1 & \frac{-3}{5} & \frac{4}{5}
\end{array}\right] \xrightarrow{(-1 / 4) R_{2}+R_{1}}\left[\begin{array}{cc|cc}
1 & 0 & \frac{2}{5} & \frac{-1}{5} \\
0 & 1 & \frac{-3}{5} & \frac{4}{5}
\end{array}\right] \quad A^{-1}=\left[\begin{array}{cc}
\frac{2}{5} & \frac{-1}{5} \\
\frac{-3}{5} & \frac{4}{5}
\end{array}\right]
\end{aligned}
$$

Work for additional Problem 2 Slide 2:

$$
\xrightarrow{(-1) R_{2}}\left[\begin{array}{ccc|ccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & -1 & 0 \\
0 & 3 & -4 & 2 & 0 & 1
\end{array}\right] \xrightarrow{(-2) R_{2}+R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & -5 & 2 & 0 \\
0 & 1 & -2 & 3 & -1 & 0 \\
0 & 3 & -4 & 2 & 0 & 1
\end{array}\right] \xrightarrow{(-3) R_{2}+R_{3}}
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & -5 & 2 & 0 \\
0 & 1 & -2 & 3 & -1 & 0 \\
0 & 0 & 2 & -7 & 3 & 1
\end{array}\right] \xrightarrow{R_{3}+2}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & -5 & 2 & 0 \\
0 & 1 & -2 & 3 & -1 & 0 \\
0 & 0 & 1 & \frac{-7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right] \xrightarrow{2 R_{3}+R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & -5 & 2 & 0 \\
0 & 1 & 0 & -4 & 2 & 1 \\
0 & 0 & 1 & \frac{-7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

$$
\xrightarrow{(-3) R_{3}+R_{1}}\left[\begin{array}{lll|lll}
1 & 0 & 0 & \frac{11}{2} & \frac{-5}{2} & \frac{-3}{2} \\
0 & 1 & 0 & -4 & 2 & 1 \\
0 & 0 & 1 & \frac{-7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

$$
\mathrm{B}^{-1}=\left[\begin{array}{ccc}
\frac{11}{2} & \frac{-5}{2} & \frac{-3}{2} \\
-4 & 2 & 1 \\
\frac{-7}{2} & \frac{3}{2} & \frac{1}{2}
\end{array}\right]
$$

